
Don’t
build it
A GUIDE FOR PRACTITIONERS IN CIVIC TECH /
TECH FOR DEVELOPMENT

Luke Jordan / Grassroot and MIT Governance Lab / 2021

This guide aims to help you
avoid bad projects, structure
the team right, ship and learn
quicker, and mature longer.

Suggested Citation:
Jordan, Luke. 2021. “Don’t Build It: A Guide For Practitioners In
Civic Tech / Tech For Development”, Grassroot (South Africa)
and MIT Governance Lab (United States).

Luke Jordan is the Founder and CEO/CTO of
Grassroot, a civic technology organization
based in South Africa, and the 2021
practitioner-in-residence at MIT GOV/LAB.
Contact: luke.jordan@grassroot.org.za.

Grassroot is a tech platform built for low-
bandwidth, low-data settings that allows for
smart-messaging through text message
(www.grassroot.org.za).

MIT Governance Lab is a group of political
scientists focusing on innovation in citizen
engagement and government responsiveness
(www.mitgovlab.org).

Thanks to the entire Grassroot team for
suffering the lessons learned in the guide,
including Katleo Mohlabane, Busani Ndlovu,
Mbalenhle Nkosi, March Ratsela, Zinhle Miya,
and Paballo Ditshego. And, thanks to Tiago
Peixoto, Arjun Khoosal, Lily L. Tsai, Alisa Zomer,
Selmah Goldberg, and Maggie Biroscak for
providing input into versions of this guide.
Illustrations and graphic design by Susy Tort
and Gabriela Reyagadas.

About

Grassroot

MIT
Gov/Lab

Thanks

PREFACE

DOES THIS PROJECT NEED TO HAPPEN?
PROBABLY NOT

TIMELINES
& BUDGETS

EXECUTIVE
SUMMARY

PROJECT & TEAM STRUCTURE

TECHNOLOGY
SELECTION

HIRING &
CONTRACTING

USERS Vs VANITY METRICS

CONCLUSION:
REALITY

4

8

26

6

12

33

20

30

36

4

PREFACE

This guide is for teams or managers involved in considering or building
“civic technology”, i.e., technology that helps people engage government

more effectively. It is the distillation of my four years spent building
Grassroot, a civic tech platform in South Africa.

The guide is focused on the practical. I have chosen the topics by reflecting
on what people have asked for advice on over the years; on what I wish I
knew when I started, or on what early advice to me was most valuable; and
on some of the things that went wrong along the way.

Since software provides in itself no guardrails against building what
should not be built, an organization or leadership team needs to develop
its own precautions. But that is very hard when all around you people
are pretending to build cool new apps and one article after another is
talking breathlessly about supposed “technology for good”. As proof of
these forces, we can observe that for half a decade one research report
after another has pointed to the limited effect (if any) of well-intentioned
but insufficiently rigorous technology projects (“let’s build an app”). And
despite all of that research, the apps keep being built.1

That brings you to my motivation for writing this guide. I believe that
technology can help ordinary people build power and make the state
more accountable and responsive. I believe that, when targeted at the
right problem at the right time, it can make an enormous difference. I’ve
also seen close-up how the forces of contemporary thought, funding
and status will push you towards building what should not be built, with
teams who don’t know how to build it. You’ll notice the tone isn’t typical of
academic how-to guides—my approach is to describe the process honestly
and realistically, with hopes that it will give people a better sense of what
“building an app” entails, and how they can do it well, or (better yet) not do
it in the first place.

1 Among others: https://opendocs.ids.ac.uk/opendocs/bitstream/hand-
le/20.500.12413/13452/RR_Synth_Online_final.pdf.

Don’t build it

5

The guide starts with project selection, including why the best project to
select is no project at all. It moves on to team structure, and the extreme
importance of a full-time senior tech lead (or chief technology officer (CTO),
understood as an excellent engineering manager). It then covers timelines,
emphasizing shipping early but having enormous patience getting to
maturity, above all in finding product-use-fit, and avoiding vanity metrics.
The guide then goes into some detail on hiring, covering the CTO role,
senior contractors, designers and young engineers.

The longest section, by some distance, is that on hiring. Hiring is the
one thing considered critical in every piece of the lore, by founders and
investors and managers alike, across all sectors. It is also the field in which
I think I got it mostly right, and for reasons I can explain in ways that I
believe will be helpful.

If you just remember these...

If you can avoid
building it, don’t
build it; if you have
to build it, hire a
CTO, ship early, and
mature long; and no
matter what, draw
on a trusted crew,
build lean and fast,
and get close to and
build with your users
as soon as possible.

EXECUTIVE SUMMARY

6

A rule for this sort of guide is never give specifics that people can
hang around your neck. A rule for software development is “it takes
as long as it takes”. I’m going to break both rules, and say that for a
good team of 3-4, following good practices, you should be able to ship
a moderately complex product in about 3 months, and get it to some
form of stability and maturity within 12 months. After that, of course,
you start again—if you have users. If you don’t, stop at 6 months, or
better yet, 4 months, or best yet—don’t build it.

Tech principles: stick to
open source and pick a
popular language.

Nothing is more important
than rapid early learning, and
vanity metrics short-circuit such
learning.

Outsourcing is great as a
tactic, but a terrible strategy.

Add full-time talent cautiously,
at cost levels where you can keep
them in the team and invest in
their growing skills over time.

Get close to your users and
to do so fast with a dedicated
community engagement team.

Adaptability and speed of
learning are core criteria in
every role.

Set a budget that gets you off
to a quick start, but allows
you to keep iterating over
time.

Don’t build it

7

Don’t
build it.

The central problem of software is that anything can be built.
With a physical structure, nature and physics puts some
constraints on the space of ideas. With software, a project
can be wholly completed and deployed and only then reveal
itself as fundamentally flawed, and then we are all so inured
to bad technology that no one will really notice. Construct
a monstrous building in the middle of nowhere and movies
might be made about you; build a pointless app that no one
uses and you will just need to cite a misleading metric in a
donor report and no one will care. Conversely, construct a good
building in a sensible place and no one will think it worthy of
notice; build a not-terrible app that people use for longer than
the launch press release circulates, and you will immediately be
nominated to half a dozen “X under X” lists.

So, by far the best method is
to adopt a simple principle:

The central
problem of

software
is that

anything
can be

built.

PROBABLY NOT

8

DOES THIS PROJECT
NEED TO HAPPEN?

Just
say no.

Just
say no.

Just
say no.

When someone says,

When an investor or donor says,

When you read another article or see another TEDx
talk about someone pretending their app achieved
something, while citing numbers that are both
unverified and meaningless, and a voice inside says,

“We should
build some tech

for that”

“Why don’t you
build some
technology”

“Why don’t
we also build
technology”

9

10

Does that mean that the rest of this guide is pointless?

Hopefully so. But in reality, at some point some idea may gather such
momentum or such force of conviction that the “do not build it” ethos will
start to falter. At that point, ask these questions:

Are people already trying to do what the technology is
supposed to help them do?

If yes, how are they doing it now, and are you sure
you know why that does not work? And why will
technology make any difference to the reason
their existing attempts are frustrated?

If not, why would having technology make a
difference? Why would someone who did not
want to do X now want to do X just because
some tech exists to do it?

Of course, it is easy to fake answers to such questions in a way that justifies
building something, and that will happen most of the time. But suppose
they are answered honestly and it turns out that, for example, people
are trying to do whatever the technology is supposed to do, and it is not
working because of some fundamental problem.

The strong temptation will be to immediately try to use technology to work
on that deeper problem. But, again, don’t build it! First ask the questions
above about this fundamental problem you’ve discovered. For example,
before you build a piece of software to help a government know about
a phenomenon (violence, or service outages), ask: Aren’t people already
trying to tell them about this? If they are being ignored, why are they being
ignored? If it’s because of power imbalances, will your well-meaning alert
technology really do anything about that? Or might it be irrelevant, or even
worsen the problem by allowing the powerful to pretend (to themselves

Don’t build it

11

and to other elite stakeholders) that they are doing something? If no one
is attending government meetings, is that because they don’t know about
the meetings, or because when they attend no one listens to them? Such
examples could be multiplied almost endlessly.

If, after all of this not-building, you come to a problem where it is very
clear that: a) people are trying to do whatever the tech is supposed to
let them do, but it is not working; b) it’s not working primarily because of
some problem that technology can address; and, c) the grounds for this
are clear and certain… then it might be time to start considering possibly
building something.

But probably still not.

Outsourcing
is great as

a tactic,
but a

terrible
strategy.

PROJECT & TEAM

12

ALRIGHT YOU HAVE TO
BUILD IT. BUT WHO
WILL DO THE BUILDING?

So let’s work on the premise that you have gone through the
steps above and discovered a truly worthwhile technology

project. The next question is: Where will you find, and how will
you organize, the people who will design, code, deploy, monitor,
and iterate the project?

The first impulse for most non-technical organizations will be
to try to outsource most of the work. Outsourcing is great as
a tactic, but a terrible strategy. That is, outsourcing individual
components of work to highly-experienced, focused senior
developers and designers can provide enormous bang-for-the-
buck. They provide significant flexibility, can come in and out of
projects without eating up budget on idle time, and modern top-
end freelancer platforms allow you to find them for very specific
needs. In contrast, outsourcing as a whole makes more or less
the entire project’s success dependent on the single decision
point of what contractor you hire, and then you’re stuck. If a
single freelancer doesn’t work, you can swap them out and find
someone new, often without interrupting the rest of the team; if
a whole outsourcer doesn’t work, you have to replace the team,
halt most of the work, and may even face a legal dispute over
breaking the contract.

13

The reason is that, unless an organization has a competent Chief
Technology Officer (CTO) —more on that below— you will likely do
a terrible job of choosing a contractor. Without the ability to judge
the technical merits of proposals, or to break down a project into its
abstract technical components, you will either under- or over-specify
the requirements. Under-specifying will lead to lousy delivery with
no contractual recourse; over-specifying will lead to even worse
delivery (because no one will be able to adapt as you build), with the
false promise of contractual recourse.

Perhaps a friendly technical specialist will provide input on the
specifications, but it is usually obvious to an experienced eye when
the primary drafter of a request for proposal (RFP) or other bid
document is not technically versed. A whole cottage industry of
consultants looks for such RFPs, and they’re not exactly who you
want building the project you can’t avoid building (since, if the
project is optional, you shouldn’t be building it).

Once the RFP is out, without a technical network, how will you search
for contractors to invite? And once contractors bid, how will you
evaluate them, both at selection and at the initial milestones? Is
the friendly developer who put some track changes in the technical

Don’t build it

14

annex really going to do all that? If not, you’ll be reduced to
selecting based on a portfolio and stated expertise. Given the
frequency with which non-technical organizations hire bad
technical contractors, hiring on a portfolio without the ability
to technically interrogate it is worse than random selection,
because you’ll be selecting on salesmanship, and that is, if
anything, inversely correlated with technical ability.

Every now and then, some organization does luck out, and a
limited project finds the perfect contractor and it works. But a
strategy that fails except when extremely lucky is more or less
the definition of a terrible strategy.

Chief Technology Officer (CTO)

Some organizations may worry about how they will bear the cost
of a CTO between projects. If that is a worry, don’t build it—your
organization isn’t ready to sustain a good tech product. Having
that worry means you’re assuming that technology is built as a
once-off project, is complete once deployed, and will not need
ongoing work to iterate and improve it. And if that’s the case,
then either the problem is not understood (go back to step 1),
or the technology itself is not understood, and the project is
doomed from the start.

Of course, resources may change over time. But for at least
several years after a useful tech project begins, it will require at
least half or more (most often more) of the time of a good CTO.
Just like you shouldn’t adopt a puppy if no one in your house
wants to walk it or feed it when it’s no longer cute, you shouldn’t
embark on a tech product unless you have a qualified CTO who
can take care of it when it grows up.

In the rare circumstances that a project is so mature that a
CTO has spare capacity, they can, for example, work on internal
technology upgrades (the kind that many organizations during
the pandemic realized they should have done years ago), or
engage in cost-sharing collaborations with other partners. In
most organizations, a skilled, high-quality technology manager
will always be useful.

15

Full-time technology staff
For the rest of the team, let the skill profiles follow the product.
Add full-time talent cautiously, at cost levels where you can
keep them in the team and invest in their growing skills over
time. Leave enough budget to bring in exceptional talent to do
short-term, niche-technology, high-value chunks of the project.
For example, you might combine a good but junior front-end
developer with a month or so of an extremely skilled senior
front-end person, who can lay down the structure of the code
and the first core components, and mentor the junior staffer
who can build out the remainder.

Having full-time people, even if very junior, for a long stretch of
time, is worth the investment. Your organization can internalize
knowledge and retain it over time. Senior contractors bring deep
knowledge of their domain; in-house developers bring deep
knowledge of the system; one without the other is likely to fail,
like a clinic that tries to rely exclusively on in-house doctors, or
dispense with them entirely.

There are many different combinations, but the idea is to
optimize for continuity at the base, apply extremely high skills
where it matters (even if in short bursts), and leave a healthy
margin of error.

Add full-
time talent
cautiously,
at cost
levels
where you
can keep
them in
the team
and invest
in their
growing
skills over
time.

Technology stack:
The combination of
technologies that
make up a product
or project (which
are, metaphorically,
stacked on top of
each other to create
something useful or
delightful).

16

For example, a great team structure might look like a raw junior
developer, a very good technical lead on the most important
parts of the stack , and a bench of senior freelancers specializing
in a specific part of the stack, coming on for a few weeks or days
at a time, with a budget reserve left for emergency help when
needed. Likewise, solely to illustrate, a terrible team structure
might consist of three mid-tier generalists, experienced in the
wrong parts of the stack, and no reserve left (Figure 1). The one
commonality is that no matter how the team is assembled, the
project will likely end badly unless you have a CTO.

FIGURE 1

CTO (full time)

Strongly
mentors

Great

Senior UX/UI
specialist

Senior DevOps
consultant

Emergency senior
fullstack developer

Junior developer (FT) Junior developer (FT)

Senior mid-level
developer (generalist)

Argues
with

Partially
mentors

Not so great

Mid-level developer
(fullstack)

Junior developer
(frontend)

17

Connecting developers, user experience,
and field staff
A final note on team composition: you need people who can
build the technology, but you also need people who understand
the context in which the technology will be used, i.e., the
countries, communities, organizations or demographics that
form its audience.

Part of that understanding should be built with “user
experience” (UX) techniques, by skilled UX contractors (see the
section in Hiring, below). In time, you may be able to justify
hiring a full time UX specialist. But, especially at the start, it’s
unlikely that you will have the base load of demand to justify
hiring a UX specialist full-time, and probably not the budget
to have one on-demand via a retainer. The more that the field
team understands how features are built (and, ideally, have
been trained in some UX techniques themselves), the more they
can adapt their observations to what is likely most useful to the
development team. The more the engineering team understands
what is happening in the field, the more likely they are to
propose new ideas or alternate directions for what they build (or
have healthy second thoughts).

That said, contextual understanding should not be a hard and
fast rule, especially in more senior hires. In general, adaptability
and speed of learning are core criteria in every role. An
adaptable, fast learner can design or build for a new context,
even if they lack former field experience. Conversely, a slow
learner might have a contextual understanding that is outdated,
will be slow to update that understanding, and may be resistant
to viewpoints that differ from their own.

For very junior roles, you can and should weigh context heavily,
by prioritising young developers from the communities you are
building for. An old Confucian saying is that “the streets are full
of sages”. The streets are also full of developers, if you put in the
work to look. It’s worth sifting through CVs to find someone with
the right abilities and mindset, but also a lived experience that
can enrich team discussions.

Yet no one will be able to adapt or learn if they are not brought
into regular contact with the project’s context, or with direct
feedback from potential or actual users. Developers with a
more traditional, large-team or corporate background may be

Adaptability
and speed
of learning
are core
criteria in
every role.

18

uncomfortable thinking about context at first, since in larger
and more mature teams writing the code is usually quite distinct
from thinking about its use. But in small teams (and, some
would say, even in larger ones), everyone should be thinking
about users’ needs.

In civic tech, that means forging a close link between the
community outreach team and the developer team. But that
also requires having a community or field team that is deeply
embedded with and honest in their understanding of target users.

Invest in building links among the field and developer teams to
the extent that information flows naturally among them. Have
the developers accompany the field team on occasion; invite
the field team in to contribute to a debate on features among
the developers. When a developer comes and asks “I’m not sure
about X”, if it’s appropriate, send the developer directly to a field
team member; and vice versa, if someone comes back from the
field saying, “can we have the app do X?”, and it obviously makes
sense, send the field team member straight to the developer
who can implement X. There are fine balances at work here—the
CTO, or senior management in general, still need to be in the
loop often, and such activities can be pointless if artificial. But
it’s possible to find the right balance (Figure 2).

At Grassroot, we started off with a relatively senior-heavy
structure, with a few too many generalist contractors. Over time
we shifted to a structure of 1-2 junior developers at a time, some
of them staying on the team for a few years, supplemented
by senior specialists brought on for a few months at a time to
achieve a specific task. I myself (wearing my CTO hat) reviewed
the specialists’ code and mentored the junior developers. Our
community team had a mandate to spend two-thirds of their
time in the field, and, when not in the field, to sit with the
developers and relay what they had seen. We supplemented this
structure with user experience specialists, who we brought on
from time to time to train the community team in observing user
behaviour. The structure also allowed us to flexibly incorporate
other sources of talent, for example, through the great
“computer science for good” programs that some universities
have developed (in our case, working with Stanford).

19

Don’t build it

FIGURE 2

Field team
member A

Developer A Developer B Developer C

Field team
member B

Field team
member C

Organic

Organizes a
joint team

social event
with

Asks for help
judging a feature

trade-offBrings direct
feedback

Discuss
unforeseen

possibilities of
new feature

Field team

Telling each other what they are doing by reading bullet
points at a regular meeting

Developer team

Pretending to have fun at a
team building exercise

while actually sticking to normal work groups

20

HIRING & CONTRACTING

Chief technology officer (CTO)
Term confusion can get in the way when hiring a CTO. In a large
company, the CTO role can involve largely overseeing processes
and hiring and overseeing middle managers. Good CTOs still get
their hands dirty from time to time, but they primarily oversee a
number of processes to build. That is not what the role means in
a startup, non-profit, or even a government digital service unit.
In such teams, the CTO builds, and has to love building things..

An example background for the right person could be a senior
developer and “engineering manager” in a strong tech company,
who wants out because of the procedural weight of the latter
role; or a freelancer with a track record of working on and
delivering ambitious, complex projects. The primary criteria are
the ability to adapt to new environments and teams, to combine
good process discipline with flexibility, and, above all, a love of
building things and seeing people use them.

21

In finding a CTO, recruiters will likely be helpful. However, it will
be important to brief them that you are open to unconventional
paths and “jagged resumes”. Once you have candidates, ask them
questions like:

Is there an example of a project that you
successfully killed?

What’s the best team member you’ve ever had,
and how would you find more of them?

What’s the worst team member you’ve had, and
how would you avoid them?

Have you ever managed to mentor someone from
being on the “worst” track to being on the “best”
track? Have you come close? What did you do?

How do you decide whether a technology belongs
in the stack for a project?

How do you react when a project is (very) late? Or
when no one is using it?

There are no perfect answers to these questions. What you are
seeking is someone who has thoughtfully been able to save their
team from a colossal mistake, or a lot of wasted effort; who knows
how to compose a team, in a positive and negative way; who knows
how to guide young team members; who is constantly attuned to
new technology but also to the practicalities of getting it into the
field; and who will respond well when life happens. If you can find
someone at least somewhat familiar with the context in which you
operate, weight that highly, but not definitively—an excellent mentor
who is highly adaptive and balances rigour and creativity, but who
has only limited familiarity with your context, is much more likely
to work out well than someone who knows the context deeply but
cannot adapt or mentor.

Don’t build it

you pay
me more

not for
the code I
write, but

for the
code I don’t

write

22

Last, there are a few red flags. Avoid people who are no longer
learning. Avoid people who self-promote. Be cautious of
someone who says something like, “I don’t see myself writing
too much code, because I create more value building and
managing the team than writing code”. Of course, if the team
grows significantly, writing code will no longer be the best use
of the CTO’s time. But the kind of CTO who works well in small
teams will likely need to write a lot of code themselves. If they
don’t enjoy that activity, if they want to manage more than build,
that’s unlikely to end well.

Senior contractors
The best senior contractor I worked with told me, once: “You pay
me more not for the code I write, but for the code I don’t write”.
That was an exaggeration, but it did encapsulate a core part of
the value that a senior engineer brings—the experience to know
when a path that seems promising is likely to end up in a tangle,
or is not worth it compared to another route, shorter and not
exactly what is wanted, but close enough and at a fraction of the
time and energy.

Managing a technology project is a sequence of trade-offs. Very
good senior contractors help make the terms of the trade-off
better, by expanding the range of possible options and seeing less
complex ways of achieving outcomes (or increasing confidence
that no less complex path is available). It is difficult to fully know
in advance how good a contractor is at this art beforehand, but
you can test for it in interviews, asking, for example:

Describe a time you succeeded in preventing a
team from making a bad choice?

What is the worst project experience you’ve
had? What were the worst trade-offs made in it?

How do you personally know when you’re
making something too complex? Or when you’re
making it too simple?

23

One red flag here is if a contractor expresses a dogmatic view against a
popular framework or technology. If you have junior team members, and
the senior contractors will need to mentor them or do some knowledge
transfer, ask how they’ve handled similar situations in the past.

To source senior contractors, there are some very good platforms that
specialize in finding and filtering high-end talent (for example, Toptal). They
can charge hefty margins, but for short stints the costs are manageable. The
quality filtering they perform, alongside their ability to understand and find
niche skills, make them worthwhile. Of course, using them depends on a
technical team able to flexibly integrate and use high-quality talent quickly.
That will be impossible if your processes are too rigid, the rest of your team
too dogmatic, or, of course, if you do not have a CTO overseeing the whole
process.

UX/UI designers
Good user experience and interface designers should be able to adapt to
any context, by following user behaviour wherever it leads. The challenge
with hiring designers is that it is very hard to identify what in a completed
project is theirs. By the time a project is done, so much iteration should
have happened that the original designs are long buried. A product that
looks wildly different at the end than at the beginning could mean a
terrible starting point, or it could mean a flexible, creative designer working
tightly with a development team to take new directions.

There is probably no real solution to this dilemma. In interviews, probe
examples of prior work to understand how a designer learns and adapts.
A friend of mine likes to hone into a single wireframe or screen, and probe
it in extreme depth. Doing so shows how deeply they thought about the
design, how much responsibility they really had for it, and how good they
are at engaging in conversations about it. If you are hiring for a significant
length of time, it is fair to set a short, contained take-home assignment.
It is also usually a good idea to avoid designers who are very rigid in
their methods or dogmatic about their craft. If someone cannot explain
why personas are sometimes a bad idea, they are a good fit for a large,
corporatized organization, but probably not for a small one or for a team
operating in ambiguous contexts.

More generally, when you find a good designer, do everything in your power
to make them enjoy working with you. Given how hard it is to hire in this
field, and given just how enormous a difference it makes to a project, there
is almost no resource quite as valuable in building technology as a superb
designer who likes to work with you.

24

Young engineers
The world’s universities, bootcamps and online courses produce
a steady stream of people every year who have heard that
coding is in huge demand, pays well, and provides a rewarding,
skill-intensive career. Shortly after completion, they get a
dozen job rejections. Maybe they get to a “technical interview”,
get asked some wholly pointless questions about things they
will never need to do, and get rejected. Those who do make it
through this absurd funnel eventually find themselves given
insignificant tasks in giant and often meaningless projects.
Then everyone wonders why the world produces such terrible
software, in such vast quantities, every year.

This situation would be comic if it weren’t so tragic. It is, though,
very useful for the person assembling a development team
on a budget. It means that you can hire very talented young
developers, almost always from the context where the project
operates, and give them a route past the entry-level absurdity
by stamping two years of experience on their CV, while offering a
modest salary. They will leave after 18-24 months, and will need
6 months to get fully up to speed, but in the period between you
will be able to build at a pace and for a budget that people from
badly assembled teams will not consider possible.

To do this, you will have to go through very, very many CVs
—possibly hundreds. You cannot automate or outsource the

Stack Overflow:
A site where
developers ask and
answer questions.
Arguably, after
Wikipedia, the single
most valuable public
good on the internet.

25

process, or you will throw away the best young engineer you
could have ever hired because someone who didn’t care enough
wanted to just get through the pile. So you and your CTO will
have to go through them. It may be the highest value work you
can do. If you don’t have the time and energy to do it—well, just
don’t build the project.

The criteria in both the CVs and the interviews that I have found
have worked best are:

Hunger to learn. Some traditional questions—about side
projects, or subjects learned outside of studies/work, or failures—
are genuinely useful. It’s also helpful to ask about a team decision
made on a prior project, and why it was made—someone who likes
to learn quickly on the job will have sought to understand the
decision, and its rationale, whereas someone who doesn’t will have
just noted it and moved along.

Commitment to quality. Coding often involves short-cuts and
practical trade-offs. The great temptation is to take an easy way out
and justify it as such a trade-off, without having properly explored
the options. It is often very hard to tell from the outside which is
the case, so the great temptation facing young developers is to
use practicality as an excuse. You can test that a little with code
tests, but not on a whiteboard. Here, take-home coding tests are
useful, but only if discussed afterwards. Otherwise, questions about
managing trade-offs in their prior life, and framing hypotheticals
about responding to imagined (but concrete and plausible)
scenarios can be helpful.

Basic technical ability. This is obvious, but (even with supposed
experience) it is sometimes remarkable how many interviewees will
not be able to code. So, some simple coding questions and a few
technical questions are handy.

The single best hire I ever made was someone who had first
tried to be a chicken farmer. The South African government
gave him a grant to raise poultry, but forgot to tell him anything
about disease management. While his chickens were dying,
he taught himself to code. By the time I interviewed him, he
had built a couple of mini-apps for his friends, and could talk
coherently about the choices he’d made building them and
how he’d build differently in the future. I found him through a
similarly young, talented and unorthodox recruiter, who I’d told
to find unusual candidates.

Set a budget
that gets

you off to a
quick start,
but allows

you to keep
iterating

over time

26

TIMELINES & BUDGETS

It is almost always the case that a simple version of the
technology you’re trying to build could get out the door and

in the hands of some real people (known as “shipping”) quicker
than you think. It is also almost always the case that bringing
the technology to a state where it’s heavily used and has
few bugs (“maturity”) will take much longer than you or your
timeline will estimate. For that reason, set a budget that gets
you off to a quick start, but allows you to keep iterating over
time, while retaining knowledge within the team.

Most things go wrong in software. Nobody wants to use what
you’ve built; or the product fails in strange and unanticipated
ways once it’s in the real world, because software and life are
both complicated. Or the product fails because it’s badly built.
There will always, always be some bugs, but you can reduce
them by an order of magnitude by (1) hiring a good CTO, and
(2) using a practice known as “DevOps”, and (though this is
more controversial if it’s not already a team habit) “test-driven
development”.

But even technology built to the highest standards will
encounter unanticipated bugs once it hits the real world. This
can extend the real timeline for building technology long past its
shipping date. Software consists of many small pieces connected
together, and is deployed in a world full of complexity. Users
behave in ways that you don’t understand at first, and could
not have anticipated. Between unanticipated behaviour and
complex interactions between components, it can be very, very
difficult to identify why something is breaking.

 A rule for
this sort of
guide is never
give specifics
that people
can hang
around your
neck. A rule
for software
development
is “it takes
as long as it
takes”. I’m
going to break
both rules

Test:
A piece of code
that asks your
software to perform
certain functions,
and then checks
whether they’re done
correctly.

27

In sum, shipping timelines can always get shorter, and
maturity timelines will always stretch. In specifics? A rule
for this sort of guide is never give specifics that people can
hang around your neck. A rule for software development
is “it takes as long as it takes”. I’m going to break both
rules, and say that for a good team of 3-4, following good
practices, you should be able to ship a moderately complex
product in about 3 months, and get it to some form of
stability and maturity within 12 months. After that, of course,
you start again—if you have users. If you don’t, stop at 6
months, or better yet, 4 months, or best yet—don’t build it.

What those timelines mean for budgets varies with the
team structure. Over four years, Grassroot spent a total
of around USD $200k on development. This covered
the build out of the core platform, its extension to
running large-scale national campaigns, experiments
with WhatsApp bots and machine learning systems,
and several Android apps. That is slightly distorted by
the organization having a combined Executive Director/
CTO (me) at a much lower than market rate, which I
don’t recommend. Nonetheless, I have known some
organizations to quote at multiples of that amount.

On a unit basis, in developed markets a good
engineering manager (to be CTO, see below) would be
about $10k per month (more in big US cities), and a
good, inexperienced junior, roughly $4k or so (again,
more in New York/San Francisco). In developing
markets, if not wholly distorted by “impact fund” or
VC money, those numbers would be $5k and $1k-$2k.
Good quality senior contractors from Eastern Europe,
for example, come at around $80-100/hour if sourced
through a good matching platform, or $40-60/hour
if done directly (it is almost always worth it using

Don’t build it

Test-driven
development (TDD):
Writing the tests
that software must
pass to be accepted,
before writing the
software itself. TDD
saves a lot of time
in the long run and
makes it immediately
clear when a
key function has
changed, at the cost
of additional time
upfront.

Turn the
corner, then

add gas; if
you add gas

before the
corner, you
just hit the

wall harder

28

a platform, unless you have worked with a contractor
already or have a strong referral). Overall, unless you
have technical expertise in-house, it should cost between
$50k-$100k (excluding CTO cost, as that will spread across
many projects) to build and get to maturity a moderately
complex project. Much less and you are kidding yourself;
much more and someone is probably pocketing some very
healthy margins.

Two last points here, one for the start of a project and the other
near maturity. First, at the start, investment in what’s known as
“tooling” usually reaps rewards down the line—that means not
just getting the “DevOps” pipeline in place (see definitions),
but also some basic documentation, coding style conventions,
scripts for getting new developers up and running, and
automating things like code quality reporting and vulnerability
scanning. Upfront investment in such tools will all increase
the speed at which the team can work in the future, not just in
routine matters but also when there’s a fire to put out. The time
pays itself back, often many times over. There is a limit though—
if someone starts suggesting something called “Kubernetes”, tell
them to stop.

Near maturity, perhaps the oldest law in software development
is Brooks’ Law: “Adding manpower to a late software project
makes it later”. More generally, if the project seems on the verge
of becoming a catastrophe, adding budget and people may
be the worst thing you can do. Bringing new people on board,
working out what to do with the new funds, establishing new
reporting, all of that will take the scarcest resource—CTO and
senior team time—and deflect it from the most important task,
which is diagnosing the core problem and fixing it. When the
project has turned the corner, and has changed from chronically
late and chronically broken to proceeding quickly and in a sound
way, albeit behind schedule, then additional resources can fuel
an acceleration. Turn the corner, then add gas; if you add gas
before the corner, you just hit the wall harder.

DevOps:
A set of practices
to enable new code
to be continuously
integrated into
existing code and
deployed swiftly
and reliably. The
specific tools for
integrating code
and deploying it are
called “continuous
integration/
continuous
deployment” (CI/CD).

Tooling:
A program that
developers use to
create, document,
debug, maintain,
deploy and otherwise
support other
programs and
applications. For
example, a source
code editor, or a tool
for detecting and
flagging potential
code quality issues.

Kubernetes:
A complex system
for managing the
deployment of
very large scale
applications (millions
of active users)

Script:
A file specifying
a sequence of
commands or
operations to perform,
for example to create
a mock replica on a
developer’s machine
of the application
being built. Often
used to automate
certain tasks, like
setting up a new
developer, archiving
log files, or checking
for new versions of
code.

29

Don’t build it
Month

0

2

4

6

8

10

12

Good timeline

Design, build and ship an
MVP with solid infraestructure

Start transitioning to mature
version, and/or building
v2/next set of major features

Month

0

2

4

6

8

10

12

Not great timeline (planned or actual)

Miss deadlines, delay shipping

Ship v1, put out press release,
obtain lots of downloads

30

USERS VS
VANITY METRICS

Some of the lore in Silicon Valley is useful. The most useful is
the idea of “product market fit”, and its antithesis, the “vanity

metric”. Having product market fit means that you have built
something that people find valuable to use regularly and will tell
other people about. In other words, do people actually want to
use the thing that you are building? What is important here is
that your opinion of whether people want to use your product,
your partners’ view, even your focus group’s view, are all
inadmissible as evidence. Evidence is data from within the app,
collected over a meaningful number of users, over a meaningful
amount of time.

Equally important is that “people using the product” does not
mean “total downloads”, or “landing pages”, or even “accounts
created”. “Using” means either taking the core action regularly
and repeatedly, or —even better— paying (even a micropayment)
for the technology. Those other measurements are “vanity
metrics”, meaning a metric that makes you feel good or presents
your technology in a good light, but does not reflect reality. The
most common example is to measure total user numbers, which
will always go up except in a complete catastrophe.

Evidence is
data from
within the

app, collected
over a

meaningful
number of

users, over a
meaningful
amount of

time

Funnel:
A sequence of steps
that a potential user
goes through on the
way to becoming a
regular user, from
landing on your
website or app listing
(top of the funnel)
to being fully set
up and regularly
engaged (bottom of
the funnel).

31

Vanity metrics are especially dangerous for non-profit
and government projects, because free press makes them
easy to pump up, and the lack of profit and loss means
that such metrics can short-circuit learning indefinitely.
Moreover, donors and senior officials will create strong if
tacit incentives to use the metrics that make targets easiest
to beat—and some nice free press can usually follow. But for
a project itself, nothing is more important than rapid early
learning, and vanity metrics short-circuit such learning. If
possible, don’t send that press release, until confident that
you are near product-market fit, and, even if you need the
vanity metrics to appease other stakeholders, ban them
from internal team discussions. Vanity metrics are extremely
seductive, especially in difficult periods. One team member
just needs to say, “We shouldn’t be so down, total users
are still really high!”, and the rigorous honesty on which
progress depends will come to a halt.

Instead, build a funnel, from downloads through sign up
through to regular use or subscription, and watch how
new users progress through it. To do that, you will need
fine-grained data from your app on how people are using
it, obviously anonymized and aggregated. This is called
“instrumentation”, and it will allow you to watch how
average behaviour among groups of users (cohorts) changes.
Tools like Amplitude make it simple to set this up—you do
not need to build it yourself—and allow non-technical team
members to monitor how use is evolving. Practically, set up
a chart showing what percentage of people drop off from
use at what stage, and open that chart every single morning.
If it’s not getting better, you need to fix things, no matter
what the latest social media blast did to the vanity metrics.
If cohort retention is not going up, your project is not fitting
its intended use.

If that is the case, what do you do? A set of techniques in
user experience and user interface design (UX/UI) can help
you understand where products are falling short (just asking
people is not a good idea—they will be too nice, and may
not remember). If you don’t have a UX/UI specialist, or are

Nothing
is more
important
than rapid
early
learning,
and vanity
metrics
short-circuit
such learning

Don’t build it

Cohorts:
A group of users that
started using the
product at roughly the
same time. This is used
to analyze if product-
market fit is getting
better or worse.

Cohort retention:
What proportion of
a cohort is still using
the product at a later
date.

Instrumentation:
Tools embedded in a
software product to
measure in real-time
how it is being used
and when and where
it is failing.

UX/UI:
The profession
of designing
user experiences
(informally, the “flow”
of a product) and
then turning that
experience into a user
interface (the specific
design).

32

very short on budget, read up on the techniques (I hope my UX/
UI friends will forgive me) unless you are in really deep trouble,
in which case find the budget or appeal for a UX/UI volunteer.
If you invested in good tooling and instrumentation upfront, it
should be easy to deploy small tweaks very quickly, and observe
the results in real time. You will still need some patience and
flexibility—but not too much.

Finding the right balance between perseverance and stupidity
is a hard art. It is normal to see conversion rates go down as
often as they go up in the first few months after launch. But if
you aren’t constantly getting closer to product-market-fit after 3
months, go back to the drawing board. If you aren’t very close by
9 months after your first launch, it’s likely time to pull the plug
and free up the resources for something else. Another red flag is
if, a few months after launch, the week-by-week cohort retention
rate goes down for a long stretch of time, and repeated (3+)
attempts to fix the problem have all failed to produce any effect.

Once your cohorts are consistently getting better and a healthy
proportion of your users are converting into regular or paying
users, the next metric to watch is a “net promoter score” (NPS).
That measures how likely people are to recommend your product
to others. By far the best way to measure that is by embedding a
referral code system in the product and monitoring its use, but
occasional and/or automated surveys provide a proxy.

The single worst measure of how you are doing is press
coverage. Be immensely suspicious of any project with a lot of
press coverage. It hints at a team trying to pump vanity metrics
instead of making their product work.

Conversion rates:
What percentage of
users at a certain step
in the funnel move
onto the next step, e.g.,
what percentage of
people who download
an app or visit the
homepage then create
an account.

33

TECHNOLOGY SELECTION

I get asked quite often by non-technical friends embarking
on projects, or just wanting to learn to code themselves, “Is

language X a good idea?” To a large extent, the CTO you’ve hired
should make these decisions. But just as, if you run a health
organization and aren’t a doctor, it’s good to know enough about
health to follow high-level discussions about medical techniques,
it is useful to know a little about technology selection.

The little that’s most useful to know is that, within some broad
parameters, specifics don’t matter too much. Do not spend too
much time on what programming language to use for a project,
what exact database, what to use for the mobile app or the web
page. Instead, use a couple of broad principles, and try to avoid
anyone trying too hard to convince you that their technology
preference is a perfect solution —either they are trying to sell
you something, or they have insufficient experience. The basic
principles are:

(1) Stick to open source. For non-profits, this choice is largely
enforced by budgets. For government projects, anecdotal
evidence suggests that giant enterprise vendors are trying to
sell aggressively in the developing world to make up for being
increasingly replaced by open source in the developed world. Do
not listen to them. Just use Postgres (or MySQL or MongoDB, if your
team has more experience with them).

34

(2) Pick a popular language. As a rough rule of thumb, use Python if machine
learning will be important, Java or C++ if you anticipate tens of millions of users,
and the Javascript family (NodeJS/Typescript) otherwise. But as long as you avoid
PHP (I know I said not to be dogmatic, but PHP is actually terrible), it doesn’t
really matter what you use. Picking one of the more popular languages just
means you have a larger pool to hire or contract from, more frameworks to use,
and general problems in underlying packages are likely to be fixed more quickly.

As described in various sections above, you will want to require test-driven
development. You will also want to make sure everything is instrumented,
i.e., you are able to monitor real-time usage statistics and detect crashes and
failures, and, if you are using contractors, that documentation is up to snuff.

Importantly, the choice of technology has almost no impact on security.
Good security requires process discipline and a healthy dose of paranoia.
If someone believes a technology choice will provide security, they will
be hacked, unless the product is not used, in which case no one will care
enough to hack them. Security starts with design. A practice known as
“security by design” will design the overall system, so far as practical, to
prevent and contain breaches. For example, the tables containing any
personally identifiable data should be kept on a separate server to the one
used for processing normal user activity, and the functions that handle
such activity should never have permission to access the other server. That
practice intersects with a general principle of good software engineering
— known as “separation of concerns”. Similarly, make sure that you have
DevOps in place (see Timelines & Budgets above), and make sure that
security scans are incorporated in the DevOps process, so that code is
automatically scanned for vulnerabilities. In general, clean code is good
code, and good code is (relatively) secure code; good teams produce good
code, and incorporate secure practices.

And yet, you should assume that, at some point, you will be hacked. On
a project with a large budget, you could commission penetration tests.
Whether you can or can’t afford that, have regular sessions with the
development team to ask: If someone hacks us tonight, what’s the most data
they can get, depending on how they enter? How would we know? What has
changed that might open up new vulnerabilities? Your CTO should lead these
discussions. But non-technical leadership should participate too —if not in
the very granular technical discussions, at least at the level of system design
and understanding the potential and means of containing breaches.

Framework:
A base of pre-built
code packages that
allow developers to
quickly create new
applications. For
example, React is a
framework for web
development.

Penetration test:
When a hired or
friendly hacker
(sometimes called
“white hat”) tries
to penetrate your
system to reveal
vulnerabilities so
that they can be
fixed.

API:
Application
programming
interface. A way for
one application
(e.g., the app on
the phone) to
communicate
with another (e.g.,
the cloud-based
function performing
processing).

35

Finally, it should be noted that if you have decided
to contract out the entire development, even
though it is a terrible strategy, you can insert all of
the above as requirements in the scope of work.
Your CTO will have to check that the developer is
keeping to them. If you have contracted out the
entire development and have not hired a CTO, put
the requirements in and hope that you get lucky
and the contractor pays attention.

Don’t build it

REALITY

36

Despite the best practices and best intentions, we live in
the real world. It is more or less inevitable that the forces

of press attention, donor preferences, team preferences, and
institutional inertia result in a decision to build some technology
for bad reasons. You may be pressed to “do something digital”,
to undertake “digital transformation”, or the like. Vanity metrics
will proliferate. Someone will suggest press coverage. Before you
know it, you’ll be connecting unrepresentative organizations to
unaccountable institutions via unusable chatbots, justifying it by
a few thousand people who tried it out and never used it again.
Or, you may find a project genuinely worth doing, but will be
unable to hire a good full-time technology leader, and so will end
up with a part-time, mostly uninterested contractor and a few
junior engineers lacking mentorship, and a project that ships late
and then is never fixed.

Right now, many donor grants and expectations aren’t
structured for successful tech products. At Grassroot, I had to
spend a lot of time working out how to make a flexible, adaptive
team structure work with donor grants that made a distinction
between “full-time” and “part-time” salaries, even when
funding “core” activities. The idea that a junior developer might
leave, a contractor comes in briefly, a wholly new user issue is
discovered, a different contractor is brought in, and so on —this
is not a model that’s familiar to most donors. Similarly, when
we realized that even our deeper metrics of user activity and
engagement —which were going off the charts— were not leading
to impact, some donors still hoped to run up vanity numbers by
expanding into new geographies. When we did find projects that
had strong results but weak vanity metrics, we could not find
takers. And many times when I was asked for advice by friends
or peers, and I suggested not building it, whatever “it” was
would be built anyway, obtain a press release, and languish.

CONCLUSION:

Don’t build it

37

There are only a few routes out. Hopefully, the
arguments in this guide will help at the margin—to
avoid bad projects, structure the team right, ship and
learn quicker, and mature longer. If so, the guide will
have served some purpose. Otherwise, there are a final
couple of tips for reality-adjusted damage limitation.
The first is, so far as possible, cultivate a group of
good, trusted engineers and designers and team leads,
and rely on them whenever you can. If you have to
do a project, and can’t structure it right, but you have
good and trusted people that are not available right
away, then delay until they are. Connect the field team
and development continuously. Request reporting
extensions because “We have to use technology X,
and the only person who can do this project with
technology X is not available yet”, or just build the time
into the budget. Then, whenever a project comes up,
spend a bunch of time with those trusted collaborators
developing a strategy to obtain the maximum of
strategic flexibility and the ability to execute the project
well, within the constraints that reality has imposed. If
you’re conscious and cautious about it, and have built
up some experience, it’s sometimes remarkable just
how much space you can create.

Finally, the most important tool is to get close to your
users and to do so fast. Getting close to users means
having a dedicated community engagement team, being
present in the field as much as possible, and feeding
direct observation into your development process all
the time. The quicker you do so, the quicker you will
be able to iterate to something people want to use,
and the quicker you will be able to adjust a bad idea
towards at least being partially useful.

Get close to
your users
and to do so
fast. Getting
close to users
means having
a dedicated
community
engagement
team, being
present in the
field as much
as possible,

Don’t
build it

Can you avoid building it?

hire a CTO
ship early
mature long

draw on a trusted crew
build lean and fast
get close to and build with your
users as soon as possible

as the Bhagavad Gita says,

“you have a right to the work,
not to the fruit”

and no matter what:

beyond that:

if you have to
build it:

No Yes

In all:

38

Don’t
build it
A GUIDE FOR PRACTITIONERS IN CIVIC TECH /
TECH FOR DEVELOPMENT

