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EXECUTIVE SUMMARY
This technical report demonstrates how Mobile Network Operator 
(MNO) data can be used as a public good to inform policy and 
decision-making by governments and their agencies across various 
development sectors. In this use case, we demonstrate the use of 
MNO data to understand population density and migration patterns of 
people and how such insights can inform governments where to deploy 
services such as water, schools, health posts and other service points.

In this technical report, we explore the use of MNO data to deliver an 
optimized allocation model for  900 new health posts using MNO data. 
The model that will ultimately reduce the proportion of Malawians without access to health care from 44.7 
percent to just 5 percent by 2023. By using MNO data rather than relying solely on census data, government 
officials can better predict population movements in certain districts after potential flooding, and thus make 
more informed decisions about where to place future health posts. 

Targeted placement of health posts is key because providing widespread access to primary health care 
remains a challenge in many developing countries. In Malawi, an estimated 7.73 million people, or 44.7 
percent of the population, live more than 5 km from a health facility, which severely hampers their access 
to essential health care services. Malawi’s population is projected to grow from 17.6 million in 2018 to 21.6 
million in 2023. Without action, the number of Malawians without access to a health facility would grow to 
9.7 million by 2023.  
 
To remedy this, the Malawi Ministry of Health created a Capital Investment Plan (CIP) that proposes to build 
900 new health posts between 2020 and 2023. The goal is to locate these new health posts strategically 
to ensure that 95 percent of the population lives within 5 to 6 km of a health facility by 2023. Additionally, 
the plan aims to increase resilience during the rainy season by allocating more health posts to areas where 
flooding could cut off access and where large numbers of people migrate to during these periods. 

In order to get a clearer picture of population density and movement patterns throughout the country to 
properly place the health posts and maximize the efficiency of allocated resources, the Ministry of Health 
worked with development partners to integrate mobile network operator (MNO) data into the CIP it was 
developing. The proposition was that anonymized call data records (CDRs) and unique call density could 
be used as a complement to national census statistics to better reflect both seasonal migration patterns 
and long-term urbanization. The optimized analysis would then be integrated into the CIP as a technical 
appendix, informing the allocation of new health posts. This offered a concrete, policy-relevant use-case 
for the use of MNO data to inform policymaking.

To ensure sustainability and replicability, the authors engaged with government partners to integrate the 
analysis into country systems and provide a ranked list of priority locations for new health posts. The 
authors will also work with government partners in Malawi and across the globe to illustrate how such data 
for development models can be made replicable across development sectors and geographies. Insights on 
population density and movement patterns can also inform locations of water points, schools, agricultural 
cooperatives and improve people’s access to other critical programs and services.

This technical report 
demonstrates how MNO 
data can be used as a 
public good to inform 
policy and decision-
making by governments 
and their agencies .



5Using Mobile Phone Data to Make Policy Decisions

BACKGROUND
New data sources such as mobile phones and geographic information systems (GIS) are being 
widely used in the developed world for commercial and public service purposes. And while they 
have been experimented with in the developing world, they have not yet been incorporated as 
routine practice in development situations where they could provide the most benefit. The Digital 
Impact Alliance (DIAL) and its partners are working to increase the use of these new types of 
data in the developing world for humanitarian purposes by identifying use cases across health, 
agriculture, education and other areas.

In 2017, DIAL, Cooper/Smith and Infosys, in collaboration with 
the Malawi Ministry of Health (MoH) and Malawi Communications 
Regulatory Authority (MACRA), embarked on a collaborative 
effort to demonstrate the value of mobile network operator 
(MNO) data project to inform governmental policy and decision-
making. The Ministry its of Health solicited input from the DIAL 
project consortium for Plan its Capital Investment Plan (CIP), 
which included a proposal to included build 900 new health posts 
between 2020 and 2023 as part of its emphasis on expanding 
access to primary health care. A health-post is staffed by a 
clinician or community health worker and stocked with essential 
medicines in order to provide frontline care.

While the CIP includes investments in secondary and tertiary 
care, the government emphasized that expanding access to 
primary health care facilities such as health posts is its priority. At that time, 44.7 percent of 
Malawians lived more than 5 km from any health facility, leaving 7.73 million people without 
access to primary health care services. Unless the government acted, that number would grow 
to 9.7 million. The Ministry’s goal was to optimize the allocation of these health posts so that 95 
percent of the population lives within 5 to 6 km from a health facility by 2023.

The problem statement was presented as follows: To infer population movement patterns using 
anonymized, aggregated MNO data as a proxy to understand population densities, migration and 
urbanization patterns. Such data complements a national census in that it allows for dynamic 
tracking of population movement in a timely and cost-effective manner, which does not require 
expensive on-the-ground surveys. As a policy-relevant use case, the analysis develops a model 
forecasting migration patterns and optimizing the placement of health facilities in line with national 
priorities. For the purposes of this exercise access to any health facility is considered sufficient, 
with health-posts as the most cost-effective means to expand access to primary health facilities.

The Ministry of Health 
solicited input from 
the DIAL project 
consortium for its 
Capital Investment Plan 
(CIP), which included 
a proposal to build 
900 new health posts 
between 2020 and 2023  
as part of its emphasis 
on expanding access 
to primary health care .
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LITERATURE REVIEW
The background literature draws from three types of research:

With the increased availability of high-resolution satellite data 
combined with powerful algorithms, there have been sustained 
improvements in forecasting population density (Stevens et 
al., 2015). The WorldPop project, an open source collaboration 
between researchers, trains its algorithms on historical census 
data and uses it to project annual population density at 
100-meter resolution (WorldPop 2018).

Complementary to this approach, researchers have 
demonstrated the potential to harness mobile phone data to map 
population movements dynamically. Deville et al. (2014) showed 
that the density of unique users in a cell tower’s catchment 
area corresponded closely with population density. Therefore, 
researchers can extrapolate to predict shifts in population 
densities between day and night, weekdays and weekends, and across seasons. Using Portugal 
and France as case studies, they showcase significant shifts in population density, enough to 
impact service provision. Erbach-Schoenberg et al. (2016) show how similar methods can be used 
in the context of developing countries to account for seasonal fluctuations in calculating disease 
incidence. Working with mobile phone data in Namibia, they highlight how seasonal mobility 
affects estimates of malaria incidence, leading to differences of up to 30 percent compared to 
estimates created using static population maps.

Finally, research focusing on service provision has sought to link mobile phone data to 
development outcomes. Blumenstock et al. (2015) use mobile network data and machine learning 
algorithms to predict poverty outcomes in Rwanda, identifying hotspots with a high degree of 
precision. In the domain of health, Wesolowski et al. (2015) demonstrate the relationship between 
travel distance, as calculated using a household’s radius of gyration,1 and the percentage of 
households not receiving antenatal care. Travel distance remains a salient issue when it comes to 
the provision of basic health services.

This technical report  intends to bring together insights from the literature to inform a policy 
relevant use case that harnesses MNO data to identify current and future gaps in the availability of 
health services, drawing up recommendations to remedy those gaps.

1 The radius of gyration is the distance from a central point defined as the center of inertia. In this context, it is the assumed distance a 
household can travel on average given its pattern of locations identified using MNO data. 
2 WorldPop uses geospatial data calibrated on census data to create high-resolution (30 m by 30 m) maps of population distribution. 
See http://www.worldpop.org.uk/.

This technical report 
intends to bring 
together insights from 
the literature to inform a 
policy-relevant use case 
that harnesses MNO 
data to identify current 
and future gaps in the 
availability of health 
services, drawing up 
recommendations to 
remedy those gaps .

http://www.worldpop.org.uk/
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DATA COLLECTION 
Identifying Data Sources
The authors (DIAL, Infosys and Cooper/Smith) drew from existing literature to develop an 
analytical plan that sought to combine three streams of data:

1) Anonymized MNO data provided by an MNO partner, including: 
a. CDR data (2016-2017) 
b. Geo-tagged location of each cell phone tower

2) High-resolution population density data for 2015 compiled by WorldPop2

3) Location and catchment area of existing health facilities, provided by MoH in  
collaboration with UNICEF

The analysis proposed to map the MNO data to administrative units, calculating the density of 
unique callers, then calibrate this against population density using WorldPop data. Fluctuations in 
the density of callers can then be extrapolated to infer population migration trends. 

Establishing Data Pipeline 
In parallel, the authors worked to establish a viable pipeline to import MNO data to a secure 
in-country server. To ensure proper anonymization of the MNO data, Infosys provided training 
to MNO technical staff.3 A total of 26 months of data representing every call and SMS sent 
and received in Malawi between January 2016 and May 2018 were transferred to a secure 
in-country server.4 Access to the anonymized raw data was restricted to the server system 
administrator, with a small group of additional technical users given access only to the 
processed data.

Once stored on the secure server, the data was cleaned for analysis. In the process of cleaning, 
the authors flagged several issues concerning data quality, including missing observations. 
Addressing these concerns around data quality and preparing the data for analysis proved to take 
more effort and time than initially anticipated. The authors had to iterate several times with MNO 
counterparts to ensure the proper transfer and formatting of complete datasets, leading to delays. 
This was a useful lesson learned, highlighting important logistical constraints that must be tackled 
to implement such a project.5

3 The phone numbers were anonymized using a cryptographic hash function, SHA 256 algorithm. These functions are collision 
resistant, in that they generate a unique output, and one-way, so they cannot be decrypted back. 
4 The data is over the span of 29 months (Jan 2016-May 2018) but three months are missing (April 2016, May 2016 and March 2018)
5 This depends on a number of factors, as has been highlighted in a number of earlier DIAL publications, including here.
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The data contain 12.9 billion records, including 23.4 million unique receiving numbers. Active 
unique users were defined as users having used their phones at least once in the past three 
months. The ratio between unique originating numbers and unique receiving numbers is high for 
two reasons: the originating numbers are from one MNO, while the receiving numbers could be 
from either of the MNOs active in Malawi.6 Furthermore, in order to minimize information loss, 
there were no filters applied to account for application to person (A2P) calls and messages or 
for the practice of “buzzing,” which is a brief phone call alerting the other person of the need to 
call back.7 The authors have not applied any filters to the records, such as A2P calls and SMS. 
Therefore, there is a high chance that the ratio between the amount of unique receiving numbers 
to the amount of unique originating numbers will be high, especially for A2P calls. The data also 
contains unique location area codes (LAC IDs), and tower-level cell IDs, allowing the unique 
originating numbers to be matched to the nearest cell tower.8 Furthermore, the data accounted for 
the number of calls and SMS separately, as well as call forwarding and roaming. See Figure 2.

6 The two MNOs exist as a duopoly, with the one under consideration holding more than half of market share.
7 The ratio between receiving and originating drops between 2016 and 2017, which may be tied to a government push to register all 
SIM cards, rendering inactive SIM cards defunct. This does not affect the analysis, which is built on the number of unique originating 
numbers. 
8 There were 7,025 unique cell tower IDs in the master list of towers and 6,743 unique cell IDs in the CDR data, including towers that 
entered and exited the dataset. There were 6,049 matching IDs across both datasets. These towers constituted the sample size in 
terms of coverage. 

Rapid Increase in the Number of Unique Active MNO Subscribers

Data Compiling and Cleaning
When reviewing the data transferred from our MNO partner, several issues were identified 
requiring further cleaning and wrangling. Three months of data were originally missing. In addition, 
two months out of the 26 only had SMS data and were missing observations for calls sent 
and received. Our analysis trains on the whole dataset, on the assumption that these missing 
months are not anomalies. Trends in the growth of unique users suggest the authors can safely 
extrapolate from observed months. See Figure 1.

FIGURE 1
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Raw MNO Data 2016 2017 2018 
(Jan-May) Total

# Records 5,004,750,666 5,960,543,159 1,934,707,383 12,900,001,208

# Unique originating numbers 12,261,549 16,762,626 8,821,575 23,400,290

# Unique receiving numbers 50,092,409 31,288,109 18,993,028 78,600,039

# Unique LAC IDs 39 54 54 66

# Unique cell IDs 3,926 5,562 6,648 6,743

# Voice calls 3,073,839,525 3,375,532,407 592,711,535 7,042,083,467

# SMS 1,927,785,317 2,582,155,890 1,341,477,160 5,851,418,367

# Call forwarding 1,278,911 1,996,888 429,349 3,705,148

# Roaming call forwarding 1,846,913 857,974 89,339 2,794,226

Rapid Increase in the Number of Unique Active MNO Subscribers

9 Though the MNO provider shared the location of its towers, it did not provide a map of its countrywide coverage, requiring the authors 
to estimate this coverage instead.
10 Special thanks to our colleagues at UNICEF for sharing these catchment area calculations with us.

FIGURE 2

The unique originating numbers were matched to the nearest tower’s latitude and longitude 
using the cell ID. Of the 6,743 unique tower IDs in the MNO data, 6,049 were matched to the 
roster of cell towers with geospatial coordinates. Catchment area was calculated using Voronoi 
polygons, which delineate the area closest to every cell tower, with a maximum range of 20 km 
in rural areas.9 Accounting for missing observations, the pre-analysis concluded that signal from 
the observed towers could reach a land surface where an estimated 95 percent of Malawi’s 
population lives. This was considered sufficient to proceed with the analysis. The density of 
unique users was calculated by dividing the number of observed users by the cell tower’s 
catchment area.

To conduct the analysis, the above MNO data was combined with several Malawi-specific data 
sources. This includes 2015 population density at 100-meter resolution from WorldPop, calculated 
using satellite imagery trained on Malawi’s previous census, collected in 2009 (WorldPop 2018). 

UNICEF conducted an extensive survey of every operating health facility in the country and 
calculated the relevant catchment area. This catchment area constitutes the distance such 
that a patient would have to walk no more than 5 km to reach a health facility. In its analysis, 
UNICEF accounted for the road networks, topography and potential for flooding in calculating 
the 5 km catchment area for each health facility. It calculated a “best case,” where there were no 
impediments to travel, and a “worst case,” where flooding made certain roads and health facilities 
inaccessible.10 The report used the best-case model unless otherwise noted.

In collaboration with the Malawi Ministry of Health, the analysis also incorporates facility-level 
disease burden data, as reported on a monthly basis to the ministry.
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GAP ANALYSIS
A first step was to establish an estimate of coverage gap in terms of health services at the 
district and Traditional Authority (TA)11 levels based on facility catchment areas calculated by 
UNICEF combined with 2015 WorldPop population data. For the purposes of this exercise, 
access to any facility, whether primary, secondary or tertiary, was considered sufficient. While 
access to surgical and reference facilities are critical elements of a well-functioning health 
system, at the government’s directive, the study focused on identifying and expanding access to 
primary care. See Figure 3.

44 .7% of Malawians Live Outside the Current Catchment Areas

Overlaying these calculated catchment areas on WorldPop population distribution makes it 
possible to calculate the population in each district that is not within 5 km of a health facility and, 
therefore, lacks readily available access to primary health-care.

The following table presents the populations with and without access in each of Malawi’s districts, 
as both a total and a percentage of each district’s population. Estimates suggest more than 
450,000 people in each of five districts are currently underserved. These include Lilongwe, 
Mangochi, Dowa, Kasungu and Mzimba.

11 In Malawi, the traditional authority is the administrative unit below the district level.

FIGURE 3



11Using Mobile Phone Data to Make Policy Decisions

District UNICEF Health Facility  
Catchment Areas Coverage

Name Population Total with 
Access

Total Without 
Access

% Population 
Without Access

Total 17,303,307 9,567,641 7,735,666 44 .71%

Balaka 421,134 227,263 193,871 46.04%
Blantyre 1,300,397 1,032,835 267,562 20.58%
Chikwawa 577,274 356,047 221,227 38.32%
Chiradzulu 381,370 273,895 107,475 28.18%
Chitipa 236,697 126,245 110,452 46.66%
Dedza 830,299 403,326 426,973 51.42%
Dowa 739,222 285,761 453,461 61.34%
Karonga 358,380 233,863 124,517 34.74%
Kasungu 829,530 267,784 561,746 67.72%
Likoma 11,962 11,962 0 0.00%
Lilongwe 2,526,221 1,565,465 960,756 38.03%
Machinga 648,531 323,784 324,747 50.07%
Mangochi 1,058,506 523,622 534,884 50.53%
Mchinji 605,201 224,441 380,760 62.91%
Mulanje 689,479 468,309 221,170 32.08%
Mwanza 122,127 50,493 71,634 58.66%
Mzimba 1,137,498 544,283 593,215 52.15%
Neno 141,353 65,379 75,974 53.75%
Nkhata Bay 286,593 126,249 160,344 55.95%
Nkhotakota 404,014 207,532 196,482 48.63%
Nsanje 314,478 211,262 103,216 32.82%
Ntcheu 623,126 317,567 305,559 49.04%
Ntchisi 298,223 126,582 171,641 57.55%
Phalombe 416,471 212,139 204,332 49.06%
Rumphi 232,241 126,774 105,467 45.41%
Salima 448,545 219,501 229,044 51.06%
Thyolo 777,455 473,007 304,448 39.16%
Zomba 886,982 562,268 324,714 36.61%

Population with Access to Health Facilities Within 5 km

FIGURE 4

Mapping the coverage gap of the traditional authority level reveals similar patterns of coverage. 
Certain smaller districts have fewer people without access in total but are underserved as a 
percentage of the district population. For example, in Balaka only 54 percent of the population has 
access to health facilities. This suggests a trade-off between ensuring access to the maximum 
number of people and access to the highest percentage of people per district. See Figure 4.
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POPULATION MOVEMENT DYNAMICS
Estimating Population Density
Having identified a gap in coverage based on static population patterns, the next step was to 
incorporate MNO data to account for population growth and migration patterns.

For each cell tower, the authors identified the number of unique users within the cell tower’s 
catchment area.12 Dividing the number of unique users by the tower’s catchment area gives 
the density per tower. This density was mapped to TAs by calculating the weighted average of 
overlapping polygons, providing the density of unique originating IDs in each traditional authority.

The analysis sought to determine the relationship between the density of unique originating IDs σc 
and population density Pc. The training data for population density came from the 2015 WorldPop 
data, extrapolated to 2016 and 2017, calculated for each traditional authority to ensure one-to-one 
correspondence between σc and Pc.

The relationship was estimated using a linear regression formula estimated using ordinary least 
squares (OLS):

logPc = α + βlogσc+ μk

Where α is the regression constant, β is the coefficient of interest and μ_k is a regional fixed effect 
that allows for inter-regional variation. The regression was calculated separately for 2016 and 
2017. To allow for potential spatial correlation, the specification was tested for the significance 
of Moran’s I, a matrix weighted for spatial adjacency (Odland 1988). If the null of no spatial 
correlation was rejected, the model was estimated to account for spatial co-variance. 

The central region of the country has a higher beta coefficient than the south or the north, likely 
because it has a much higher mobile penetration, as evidenced by the ratio of population density 
to unique call density. This validates the need to separate coefficients across regions. The 
coefficients were consistent within regions between years. See Figure 5.

12 Unique users were defined as those active within the last three months (at least one SMS or call). As in Deville et al. (2014), the 
number of unique users per tower was calculated as the sum of unique users active within the cell tower’s polygon between 8:00 pm 
and 7:00 am, when users are assumed to be at home. Their location was determined as the tower they use most frequently, the model 
tower. The number of unique users per night was then averaged over the entire year.
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Spatial k-fold cross-validation was used to validate the above results (Pohjankukka 2017). The 
model was re-run k=8 times, each time omitting 1/8 of the sample. The estimated coefficient β 
̂was then used to calculate the predicted population density logPc, and compared to the actual 
population density. The R2 values suggest that variation in unique caller density accounts for 
between a quarter and a third of the variation in population density. See Figure 6.

Correspondence Between Log Call Density and Log Population Density

As evidenced from the figure above, the correspondence between log call density and log population 
density is largely linear, though there are some outliers at the low-end of population density, sparsely 
inhabited areas where the number of unique callers is an imperfect proxy for population.

Unlike the static population estimates from the WorldPop data, the number of unique user IDs 
from the MNO data varies from day to day and month to month. As we see above, the regional 
coefficients are consistent between 2016 and 2017, tentative evidence that the relationship holds 
over time. The estimated coefficients can therefore be used to calculate predicted population 
densities across time, uncovering the dynamics of population movement.

Results of Regressing Population Density on Density of Unique Callers, OLS

2016 2017
South Central North South Central North

α 4.52 3.43 4.1 4.51 3.29 4.01
β 0.624 0.86 0.595 0.597 0.89 0.597

P-Value (6.815*10^-9) (0.00478) (0.0002662) (3.388*10^-8) (0.0349) (0.0002321)

R2 0.2748 0.3701 0.2533 0.2529 0.3707 0.2575
Moran’s I 0.108 0.021 0.344 0.197 0.026 0.36822

Account for Spatial
Correllation No Yes No No Yes No

(Pc/σc) 60.83 19.81 59.64 51.56 17.41 49.92
N 107 95 48 107 95 48

FIGURE 5

FIGURE 6
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Validation Using Census Data 
With the beta coefficients estimated, the next step was to project population growth patterns 
forward for every TA. The static WorldPop data uses a uniform growth rate across all TAs to 
project population growth, assuming that it will grow at a rate of 2.785% per year across all 
administrative areas.13 Instead, the authors calculated the change in the density of unique users 
across time in each TA. In order to account for subscriber growth, a unique set of active users 
were identified at the beginning of January 2016 and their movements tracked throughout the two 
years to capture shifts in population.

Using the coefficients estimated above, these shifts in unique users were used to estimate the 
percentage change in population density for each TA. While the overall country’s population growth 
rate was held constant each TA grew at a different rate. Certain TA’s, largely in urban areas, were 
allowed to grow faster, while other TAs, notably in rural areas, grew slower or even shrunk. The 
country’s population was therefore redistributed for allow for observed migratory patterns.

In order to validate this methodology, the predicted population levels were compared with the 
results from the 2018 census. The census provides a detailed headcount of population based 
on on-the-ground surveys at the national, district and traditional authority levels in 2018. This is 
considered the authoritative, ground-truth data. This was compared with predicted population 
levels based on a) the WorldPop data projected uniformly forward to 201814 and b) the TA-specific 
growth rates inferred from shifts in a fixed number of unique users. So, while the totals for a) and 
b) are identical, the district level population levels will differ. See Figure 7.

There is less than 5 percent discrepancy between the predicted and actual population levels for 
each district. Using satellite data and MNO data are both good proxies for actual population levels.15

   

13 This number was derived by comparing TA level population levels as projected by WorldPop in 2015, 2016 and 2017.
14 Recall that WorldPop based its projections on the 2009 census, training satellite data on it and projecting forward using a uniform 
growth rate.
15 While this validates long-term growth patterns, as the authors do not know the composition of cell phone users relative to those who 
tend to migrate, short- and medium-term population mobility may be overstated or understated.

Validation of 2018 Population Projection

FIGURE 7
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Short- and Medium-Term Population Movements 
Once benchmarked to population density, the authors calculated population movement from 
month to month and across times of day. This allowed for the following three types of analysis:

1) Commuting 
To understand commuting patterns, the authors compared the population as inferred by cell phone 
activity during the nighttime (8:00 pm – 7:00 am) and daytime (7:00 am – 8:00 pm).16 The map 
below presents the percentage change in estimated population density during the day relative to 
the night. The percentage changes are mostly >0, reflecting a higher level of cell activity during 
the day relative to the night.

Nighttime location is assumed to indicate where a person lives. Shifts in their movement during 
the daytime offer evidence of commuting behavior. This may be relevant for patients seeking care 
when going to or returning from work.

Comparing nighttime and daytime activity at the TA level, there is a general surge during the 
daytime and some evidence of commuting into the larger cities. The report accounts for these 
commuting patterns in recommending the location of health posts by emphasizing areas where 
people spend the night, between 8pm and 7am. See Figure 8.

16 Each unique number’s daytime and nighttime location was inferred using their modal location during the daytime and nighttime.

Evidence of Commuting from Periphery to City Centers

FIGURE 8
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2) Weekend vs . Weekday
A second analysis observed population movement across the weekday and weekend to infer 
whether there were significant population movements to be accounted for when providing 
health services. This was done by comparing the average number of nighttime unique users 
per TA during the week to the average nighttime unique users per TA during the weekend 
and extrapolating to population using the estimated coefficients. The map below displays the 
percentage change in estimated population density on weekends relative to weekdays.

The most significant shift seems to be in the north, when on weekends a large number of 
people move from west to east, potentially to the lake. In the center, there is some evidence that 
individuals leave Lilongwe on weekends. High numbers of people along the Mozambique border 
over the weekend suggest the presence of market places. See Figure 9.

Population Shifts to Coast and Markets on Weekends
FIGURE 9
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During the rainy season there is a large-scale migration from the center of Malawi, especially 
around Lilongwe, towards the south. In particular, populations shift towards the Shire River Basin, 
an agriculturally fertile land where intensive agriculture is practiced. This offers evidence of 
seasonal migration, likely driven by the need for labor for agricultural activities.

3) Migration 
A third area of analysis was seasonal migration. Since an estimated 80 percent of Malawi’s 
population engages in agricultural activities, many of them are subject to seasonal migration, 
particularly seasonal laborers. The authors therefore compared population density in the rainy 
season (November - April) to the non-rainy season (May - October). This meant comparing 
the average number of active unique users per month17 in the rainy and dry seasons and 
extrapolated to population using the coefficients outlined above.18

The map below presents the change in population density, illustrating population movement during 
the rainy season as a percent change. See Figure 10.

Population Shifts from the Central Region to the Southern Region 
During the Rainy Season

17 This includes all users who sent an SMS or made a call in the past three months.
18 As the demographic characteristics of cell phone users are not available, these estimates may either be an upper bound, if those who 
migrate are more likely to own cell phones, or a lower bound, if those who migrate are poorer and thus less likely to own cell phones. 
The magnitude of the shift suggests an upper bound estimate.

FIGURE 10
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The analysis proceeded in the following sequence:

OPTIMIZATION OF FACILITY ALLOCATION
Given the observed gap in service provision, an optimal allocation of health posts can be 
calculated using projected population growth based on MNO data. This optimization seeks to 
maximize coverage of currently unserved populations, accounting for population growth and 
migration patterns.

Identified a consistent set of unique users in 2016 and 2017 and 
calculated the net-flows in or out of each Traditional Authority for each 
year. The net-flow is the difference between number of unique users in the TA 
at the beginning of the year and number of unique users in the TA at the end 
of the year. Restricting the analysis to a consistent sub-sample ensures that 
additional subscribers do not bias the sample. The TA-level 2016 and 2017 
net-flows were not statistically different, so the average was taken.

Used NetFlow to adjust projected population growth for each TA. As 
described above, the national-level projected growth rate was pegged to the 
WorldPop growth rate, but TA level growth was allowed to vary. This method 
was validated using the 2018 census. Some TAs grew faster, especially in 
urban areas, and some TAs grew slower or even shrank. Population growth 
was then projected forward to 2019 to 2023, allowing differential growth rates 
that more accurately reflect migration and urbanization patterns.

Used the catchment areas of existing health facilities defined by UNICEF, 
along with population density and long-term population movement, 
to identify the availability of health facilities within each TA relative to the 
population. The total estimated uncovered population at time t is Ut.

STEP 1

STEP 2

STEP 3

1 2
Net 

Flow

3 4 5 6 7
wj
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STEP 4

STEP 5

Calculated spatial clusters containing a given uncovered population 
based on the WorldPop data adjusted for population growth and migration. 
To obtain such clusters, population density was calculated for each cell tower 
catchment area with the highest resolution available, using the estimated 
coefficients and adjusting for TA-level population growth. Short-term 
movements were used to identify highest-used locations within each TA. 
These clusters were restricted to be outside of the existing catchment areas, 
have a maximum radius of 6 km and contain no more than 12,500 people. If 
a given area contained more than 12,500 people, it was split, and two new 
clusters were calculated. The centroid for these spatial clusters was identified. 
These demand points are the candidate sites for new facilities, denoted Pij for 
facility i in TA j.

Selected a distance beyond which a patient cannot travel to the health 
post: D called Impedance cutoff. This defines the catchment area. To 
maximize coverage, the cutoff was allowed to vary between 5 and 6 km. The 
population within this catchment is denoted Ci.

At the TA level, the importance of population can be mediated by weight 
wj capturing TA-level disease burdens.

Optimization was conducted iteratively for every year, accounting for 
health posts allocated to date. Given the demand points, the number of 
facilities allocated in a given year is optimized to minimize the number of 
under-served Ut given the constraint P̅, the maximum number of health 
centers that can be built within a year. Once allocated, in the subsequent 
year the demand point Pij is removed from consideration, since it’s already 
allocated. The model seeks to optimize the following objective function:

Min Ut - ∑∑ wj * ∑ Pij * Ci

s.t ∑ Pij ≤ P̅

Based on the above, three different models were run. 

Accounts for underserved population only, giving all TAs an equal weight wj 
of 1.

Accounts for underserved population and TA-level disease burden but doesn’t 
rank the severity of disease. wj is the number of patients at the TA level, 
regardless of disease.

Accounts for underserved population, TA-level disease burden and the 
severity of disease, ranking these by severity in terms of disability adjusted 
life years (DALYs) from the Global Burden of Disease (GBD) compiled by 
the Institute for Health Metrics and Evaluation (IHME).19 wj is the number of 
patients at the TA level, weighted by disease.

STEP 6

MODEL 1

MODEL 2

MODEL 3

STEP 7
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Model 1: Underserved Population Only 
The results find that by strategically placing 900 new health posts to account for existing gaps, 95 
percent of the population will be within 5 to 6 km of a health post by 2023. Adjusting for disease 
burden does not significantly alter these results. If those health posts are not built, 9.7 million 
Malawians, 44.85 percent of the population, would still be uncovered by 2023. See table below.

Results from Model 1, 2 and 3 in Terms of Coverage

Descriptions Model 1 Model 2 Model 3

Year 4 (2023) forecasted 
population 21,621,892 21,621,892 21,621,892

Year 4 (2023) estimated 
uncovered population before 
900 new health posts

9,696,818 9,696,818 9,696,818

Year 4 (2023) estimated 
uncovered % population 
before 900 new health posts

44.85% 44.85% 44.85%

Year 4 (2023) estimated 
uncovered population after 
900 new health posts

1,122,720 1,228,322 1,242,047

900 new health posts 5.19% 5.68% 5.74%

These health posts are each expected to serve a maximum of between 12,000 and 12,500 people 
within a 5 to 6 km radius. The proposed schedule of construction is drawn from the CIP, with the 
assumption that the one health post scheduled for 2019 will be built in 2020 instead, for a total 
of 198 health posts in 2020. In each subsequent year, 234 health posts are to be built in order to 
reach the goal of 900 health posts by 2023. See table below.

Year-on-Year Distribution of Health Posts by Catchment Population 
(Model 1)

Year Up to 12,000 12,000 to 12,500 Total
1 108 90 198

2 181 53 234
3 209 25 234
4 233 1 234

Total 731 169 900

19 Available at http://www.healthdata.org/malawi.

The allocation of these new health posts reflects population growth patterns, seeking to fill gaps in 
coverage in both rural areas and rapidly expanding urban areas. The initial facilities are expected 
to serve upwards of 12,000 people each, reflecting the pent-up demand for services. As new 
facilities are built, the additional number of people served by each health post gradually goes 
down. The 900th health post is expected to serve fewer than 3,000 people living within 6 km.

This model is currently informed by historical MNO data but can be updated using periodic or 
close to real-time MNO data as it becomes available. See Figure 11 on page 21.

http://www.healthdata.org/malawi
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Proposed Allocation of New Health Posts

FIGURE 11
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Model 2: Underserved Population and Disease Burden
Model 2 incorporates TA-level disease burden as reported by the Ministry of Health through the 
Health Management Information System. These are reported as 34 indicators, reflecting the 
number of patients diagnosed and receiving treatments every month in each reporting facility.  
The researchers chose to use administrative data because of both its timeliness and granularity 
relative to survey data, while allowing that cases reported may not necessarily reflect the actual 
disease burden in all areas due to suppressed demand.

In order to create weights from this HMIS data, each indicator was first summed across the year to 
reflect the total annual disease burden. Indicators from each facility were then summed up to the 
TA level. To accurately compare disease burdens across TAs, they were normalized by dividing 
the sum or reported cases by the TA population. An exception was made for district and central 
hospitals, which were assumed to service the entire district rather than a single TA. Their disease 
burden was therefore allocated to each TA in the district in proportion to the population, rather than 
to a single TA. See Figure 12.

Disease Burden Weights Based on HMIS Data

Finally, to calculate the weights, the 34 indicators were summed into a single index to reflect 
overall disease burden. This raw sum included the number of patients, cases and deaths 
across all categories. As the administrative data does not differentiate by patient, some of these 
indicators, such as OPD visits, included potential repeat visits by the same patient for the same 
condition. While an imperfect approximation for disease burden, it does reflect the workload health 
facilities currently face.

In terms of results, TA-level disease burdens were incorporated as weights to the objective 
function outlined at the top of page 18, and therefore skewed the allocation of facilities towards 
TAs that had a higher burden of disease. These weights adjusted the prioritization of allocation 
slightly, though the overall coverage after four years was near identical at an estimated 94.32 
percent of the population.

FIGURE 12
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Model 3: Underserved Population, Disease Burden and DALY
Model 3 differs from model 2 in that, in the final step, the sum of HMIS indicators incorporated 
the severity of the disease in terms of disability adjusted life years (DALYs), as determined by the 
Global Burden of Disease compiled by the Institute for Health Metrics and Evaluation (IHME). The 
weights were on a scale of 1 to 5, with 5 being the most severe. Adjusting for DALYs therefore put 
more weight on the indicators that have the greatest impact on health. See table below.

Results in terms of allocation were very similar to model 2, with an ANOVA test rejecting significant 
differences between all three models at the district and TA levels. Model 2 and Model 3 tended to 
produce more balanced allocations in terms of catchment populations.

Disease Weight Without DALY Weight With DALY
# of 15 - 49 age group tested HIV positive 1 5
# of HIV positive persons receiving  
ARV treatment 1 1

# of HIV positive women treated for PMTCT 1 5
acute respiratory infections - new cases (u5) 1 5
HIV confirmed positive (15-19 years) new case 1 5
diarrhea non - bloody -new cases (under5) 1 4
malaria - inpatient deaths under 5 1 4
malaria -inpatient deaths (5 & over) 1 4
malaria new case (under 5) 1 4
malaria- new cases (5 & above) 1 4
malnutrition -inpatient deaths (under 5) 1 4
malnutrition new case (under 5) 1 4
# of deliveries attended by skilled health 
personnel 1 3

# of direct obstetric deaths in facility 1 3
# of postpartum care within 2 weeks  
of delivery 1 3

# of pregnant women starting antenatal care 1 3
# of road accidents - inpatient deaths 1 3
cholera - inpatients deaths 1 3
dysentery- inpatients deaths 1 3
total # of live births 1 3
# of fully immunized under 1 child 1 2
# of persons receiving Depo-Provera 1 2
# of persons receiving IUCD 1 2
# of persons receiving Norplant 1 2
# of persons receiving 3 months’ supply  
of condoms 1 2

# of under 1 children given BCG 1 2
# of under 1 children given pentavalent 1 2
cholera - confirmed new cases 1 2
dysentery - new cases 1 2
ear infections - new cases 1 2
measles - confirmed new cases 1 2
# of OPD attendance 1 1
total # of discharges 1 1
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ALIGNMENT WITH THE MOH CAPITAL 
INVESTMENT PLAN
Overview of CIP
The Malawi Ministry of Health is planning to roll out 900 health 
posts over the next five years across all 28 districts of Malawi. 
These include both upgrades to existing facilities and the 
construction of new buildings to expand access, particularly in 
rural and remote areas, with an emphasis on the provision of 
primary health care.

As part of its draft Capital Investment Plan, the government of Malawi developed proposed 
allocations of new facilities using the following four criteria:

1) Catchment population

2) Distance to nearest existing health facilities

3) Facility accessibility (high, medium, low)

4) Preferred year for work to take place as expressed by the District Health Monitoring Teams

The CIP projects that the cost of equipping and building these health posts will be $41,954,407 
over five years. Based on a review of the CIP appendix, the plan recommends the following 
allocation of health posts per district:

Proposed New Health Posts in Capital Investment Plan

The Malawi Ministry 
of Health is planning 
to roll out 900 health 
posts over the next 
five years across all 
28 districts of Malawi .
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Allocative Efficiency
Since the exact location of these proposed health posts is yet to be determined, the authors could 
not conduct an analysis of their proposed catchment area. Instead, by incorporating this data into 
the analysis presented above, it can calculate the “people per health post.” That is, based on the 
current number of people without access per district, how many people each new health post 
will service assuming they service all the people without current access. People per health post 
therefore measures allocative efficiency.

(# of People Without Access in District)

(# of New Health Posts)
=  People per Health Post

Incorporating MNO data, the metric changes when accounting for population shifts in the rainy 
and dry seasons. The people per health post for each scenario is presented in the figure below:

The dotted line represents an illustrative threshold of 10,000 per new health post, showing how 
certain districts are below that threshold and others above it.20 Blantyre has a particularly high 
people per health post value, suggesting there are insufficient proposed posts to provide services 
to the population currently not covered.

Efficiency: Allocation of People per Health Post Under CIP

20 This threshold is illustrative only, as the CIP does not specify the estimated maximum capacity of a health post. The authors 
recommend consulting with MoH to establish a recommended threshold.
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Allocative efficiency can also be adjusted to allow for catastrophic shocks, such as floods cutting 
off access to health facilities. By combining the UNICEF worst case scenario for flooding with 
the population movement analytics, the people per new health post ratio can be calculated in the 
event of catastrophic floods, like those in 2015, and thereby identify the most vulnerable districts. 
See Figure 13.

Resilience: People per Health Post, Accounting for Flooding

FIGURE 13

From the above, Blantyre, Nsanje, Chiradzulu and Mulanje are particularly vulnerable in the event 
of a flood. In Blantyre and Nsanje, a flood may mean that each new health post must service up to 
31,500 people, straining its capacity.
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COMPARISON WITH OPTIMIZED ALLOCATION

21 This was calculated as ∑[(Uk – Pk
CIP * 12,500) * 1(Uk – Pk

CIP  * 12,500 > 0)] the sum of the difference between Uk, the unserved 
population per district adjusted for population growth, and Pk

CIP the number of health posts proposed by the CIP multiplied by 12,500, 
but only if the difference is positive.

Comparison between the CIP and optimal allocation models 
could only be made at the district level, as the CIP does not 
recommend TA-level allocations. The optimization model 
therefore adds value in providing additional resolution, 
recommending both the Traditional Authority and the community 
where new health posts should be built.

At the district level, though the allocations were broadly aligned, 
there were significant differences between the allocation of 
new health posts as outlined in the CIP and those determined 
by the allocation. These differed most in Blantyre, Zomba and 
Chikwawa, reflecting the difference in terms of allocative efficiency. In Blantyre alone, the re-
allocation would reduce the people per health post from 17,800 to 9,200.

As a counterfactual, if each district built the number of health posts recommended in the optimized 
model and each health post could serve no more than 12,500 people, an additional 226,000 
Malawians would have access to health services, relative to the allocation under the CIP.21

Given that these regions are most vulnerable to having health facilities cut off in times of flood, 
building additional facilities may also increase their resilience, ensuring that Malawians have 
access to health facilities when they need them most. In the worst-hit districts, the maximum 
number of people per health post drops by between one-third and one-half, and the highest 
burden drops from 31,500 to 23,200, a more manageable number in times of crisis.

Based on the model, if 900 health posts are built in optimal locations, 95 percent of Malawians will 
live within walking distance of a health post by 2023.

Based on the model, 
if 900 health posts 
are built in optimal 
locations, 95 percent 
of Malawians will 
live within walking 
distance of a health 
post by 2023 .
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Change in Allocation Relative to the CIP

… and Its Resilience to Flooding

Counterfactuals: Optimized Model Improves the  
Efficiency of Allocation…
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SUSTAINABILITY AND SUPPORT TO 
GOVERNMENT PARTNERS
Dashboard
To provide further insights, the authors developed an interactive dashboard using Power BI.  
This dashboard provides an overview of:
• Estimated population density
• Health post coverage
• Cell phone usage patterns
• Long-term population movements
• Short-term population movements

Snapshot of User Dashboard

The authors intend to integrate data on patients and disease burden into the dashboard, 
combining these with the above in a user-friendly format based on feedback from MoH. 
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Engagement with Ministry of Health
The key to ensuring the relevance of this use case is engaging with government counterparts at 
both the policy and technical levels. Input was solicited throughout the process and incorporated 
into the model. Direct engagement around the analytical products allowed technical counterparts 
to provide feedback. These inputs guided the authors in designing analytical products around the 
requirements and capacities of the ministry.

In order to ensure sustainability, DIAL and Cooper/Smith organized a series of dissemination 
exercises. These included one-on-one meetings with government counterparts, deep-dive 
presentations where input was solicited and a dissemination workshop with a detailed walk-
through of the analytical products. Participants came away with an understanding of how the 
products inform their activities and provide concrete feedback the authors could incorporate to 
ensure the products fit into existing country systems. This process also initiated the conversation 
around sustainability, in order to integrate the use case into the ministry’s decision-making.

These conversations around sustainability emphasized tapping into a broader set of use cases 
to answer other questions regarding the provision of health services. This included conversations 
around additional datasets that could be combined with MNO data. The conversations also 
emphasized the importance of using appropriate tools that ministry counterparts were familiar 
with. In order to turn this analytical exercise into a viable long-term solution, the one-time transfer 
of MNO data needs to evolve into a data pipeline, providing updates on population movement 
dynamics on a monthly or bi-monthly basis.
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LESSONS LEARNED AND RECOMMENDATIONS
The process of acquiring the data, analyzing it and integrating it into country systems generated a 
number of lessons learned and recommendations, notably:

1. Define a specific, demand-driven use case to structure the analytical process within a 
realistic time horizon that allows for unforeseen delays. 

2. Emphasize country-level buy-in from the very beginning of the process to ensure 
that the use case is policy-relevant and that the research is in full regulatory compliance 
with regards to data encryption and user confidentiality.

3. Engage with private-sector partners on the potential value-add from both a CSR and 
business development perspective. Mobile network operators are looking to engage with 
development partners to expand the use of their data products, but expectations must be 
managed to allow for differing perspectives.

4. Bring together a broad-based analytical team of researchers to tackle the many 
technical challenges inherent in preparing, cleaning and analyzing multiple datasets and 
bringing them together to deliver relevant insights.

5. Engage continuously with technical counterparts to ensure the relevance of analytical 
products, laying the groundwork for integrating these products into country systems. 

Limitations of the model include:
1. The model is gender blind by construct, since the data was stripped of identifying 

characteristics. Research by the Global System for Mobile Communications Association 
(GSMA) has shown that in Sub-Saharan Africa there is a 15% gender gap in mobile 
ownership, so this model likely over-represents the movements of men compared to 
women, who are more likely to visit health facilities, particularly for pre-natal care. 

2. The model is based on data from one of two principle telecom providers in the 
country. Our validation exercise has found no evidence that this systematically biases 
the data.

3. By construct, there is no data for the approximately 5 percent of zones outside of 
mobile coverage in Malawi. Population movement and growth in these zones has been 
inferred based on observed patterns in adjacent areas with mobile coverage, but since 
these are the most remote areas, these inferences might not provide a complete picture. 

With these recommendations in mind, this use case demonstrates both the feasibility and potential 
impact of combining new data streams with rigorous analytics to improve service delivery.

https://www.gsma.com/mobilefordevelopment/resources/mobile-gender-gap-report-2019/
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