POTENTIAL MODELS

• Agile
 – Methodology for software development that arose in 2001
 – Deliver continuous value to clients by shipping new software frequently in smaller chunks
 – Gather data to iteratively improve both the product and team performance/processes

• Lean
 – Methodology for removing waste/cost
 – Began with Toyota manufacturing, later adopted for start-ups and now the social sector
 – Hypothesize, Experiment, Iterate
AGILE BACKGROUND

• Reaction against massive long-term projects
• #1 Priority: Provide customers value through continuous delivery of software/new features
• Deliver working software frequently
• Keep business people and developers working together throughout
• Constant Iteration:
 – Collect customer feedback to improve product
 – Reflect on how to become more effective and implement changes to achieve that

See http://agilemanifesto.org/principles.html for more details
AGILE PROCESS OVERVIEW

- Iterate
- Define
- Evaluate
- Develop
- Release
DEVRESULTS PROCESS

• Ongoing backlog of potential work
• Rough prioritization by Team Data ➔ Episode Queue
• Product Owner: Voice of the Customer
• Minimum Viable Product (MVP) + Iterations
• Episodes (roughly 1 month)
• Release as available with help materials and blog post
 – Optional: beta testing and/or advanced notice
LESSONS LEARNED

• Seeing our work as a continuous iterative process removes some pressure to think of EVERY use case initially
• Focus always on a Minimum Viable Product
• You need an almost maniacal focus on delivering value to customers
• Blog-driven development helped us make this shift
• Ruthlessly prioritize
• The Product Owner is essential to own/make decisions on the effort
• Generating solutions MUST be a collaborative process
• Find ways to build quality, review, and testing into everyday processes
• Limit the time between various phases
• Find ways to test riskier ideas
LEAN EXPERIMENTATION PROCESS

The Lean Experimentation Process

IDEATION AND ANALYSIS → CONSTITUENT DISCOVERY → BUILDING → TESTING → SCALING

RIETHINK → PIVOT → ITERATE → RESPONDING

Taken from: http://www.ssireview.org/articles/entry/the.promise_of_lean_experimentation
WHAT IS COLLABORATING, LEARNING, AND ADAPTING?

Collaborating, Learning, and Adapting (CLA) is USAID’s approach to organizational learning and adaptive management.

Strategic collaboration with key stakeholders leads to new insights and partnerships.

Systematic learning provides the knowledge we need to make better informed decisions.

Collaborating and learning enable adapting—our ability to make adjustments that continuously improve programming.

Systematic, intentional, and resourced CLA enables USAID missions and partners to continuously improve development programming.
WHAT’S THE CONTEXT?

Problem:

- LEARN’s goal is to support USAID in more systematically integrating collaborating, learning, and adapting (CLA) into its work, but:
 - Mission staff don’t “get” CLA.
 - Institutional barriers are enormous.

Proposed Solution:

- Facilitate an organizational change process using the CLA Maturity Matrix – a tool that looks at both integration CLA in USAID processes and enabling conditions within a mission.
APPLYING LEAN EXPERIMENTATION

<table>
<thead>
<tr>
<th>Lean</th>
<th>Development Speak</th>
<th>What We Did</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituent Discovery: Get feedback</td>
<td>Community engagement, assessments, listening sessions, focus groups, interviews</td>
<td>Stocktaking exercise with 14 USAID missions</td>
</tr>
<tr>
<td>Ideation and Analysis: Determine your value hypothesis</td>
<td>Data analysis, brainstorming, develop a theory of change and results framework, program design</td>
<td>Analyze stocktaking feedback, determine initial strategy to solve challenges</td>
</tr>
</tbody>
</table>
APPLYING LEAN EXPERIMENTATION

<table>
<thead>
<tr>
<th>Lean</th>
<th>Development Speak</th>
<th>What We Did</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build: Create a Minimum Viable Product (MVP)</td>
<td>Depends on sector – could be building a product, tool, communications material, producing architectural or engineering model</td>
<td>Developed versions 1-4 of the Collaborating, Learning, and Adapting Maturity Matrix</td>
</tr>
<tr>
<td>Test: Put your riskiest hypothesis to the test</td>
<td>Program implementation, pilots, demonstration projects, monitoring</td>
<td>Tested versions 4 – 6 of the CLA Maturity Matrix with USAID missions and partners</td>
</tr>
<tr>
<td>Respond: Determine next steps based on data</td>
<td>Stop, adapt, and/or scale implementation</td>
<td>Incorporate CLA Maturity Matrix as a reference in updated ADS, create Version 7</td>
</tr>
</tbody>
</table>
WHAT DID WE LEARN?

● Not knowing what something should or could be is incredibly liberating.
● Flexibility from leadership is critical.
● Need people on the team who are flexible and comfortable with ambiguity.
● Don’t make your minimum viable product (MVP) too perfect.
● Don’t forget that observation is an important monitoring tool when determining if your MVP is viable.
● Get constant feedback, document what you’ve changed, and share those changes with constituents.
● This process can be applied almost across the board.
NOW IT’S YOUR TURN

- Working in small groups, use the USAID solicitations to develop a lean experimentation approach for the USAID/Jordan water program or the USAID/Indonesia gender-based violence program.